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A formulation that readily allows quantitative comparisons with experimental chemical yields in long-range
charge transfer in DNA is developed. The theory is based on a superexchange-mediated sequential hopping
model that takes into account the multistep charge migrations (hopping) among guanine bases and the individual
substep of superexchange (tunneling) through adenines and/or thymines. An exact Ohm’s law is established
for kinetic multistep hopping processes, while the scattering matrix technique is exploited to determine the
coherent unistep contributions. Presented are also the quantitative comparisons with the experimental
measurements in some DNA molecules involving intrastrand and/or interstrand charge transfer processes in
aqueous solution. The dependence of product yield on both the length and the sequence of DNA is clearly

demonstrated.
I. Introduction %

Understanding of long-range charge transfer in DNA is of G+' &b 8 GGG
central significance for the control and repair of DNA oxidative = = = = —
damagé? and for the development of DNA-based molecular <
technology?4 Despite a large number of experimeftaf and § % % —

theoretical ™8 studies, the mechanism of the long-range charge _ h  d or th al y del of
transfer in DNA remains a challenge due to the complexity of 9uré 1. Schematic diagram for the sequential tunneling model o

. | h d f1h | | h ... long-range charge transfer in a DNA sequence. Each potential barrier
various engt S and sequences 0 the molecules, together W'thor well represents a local AT or GC segment, with its height or depth
their water environment. . _ being determined by the oxidation energy and its width by the number

In a DNA molecule, four bases adenosine (A), guanosine (G), of local base pairs. The model assumes that the charge tunnels
thymidine (T), and cytidine (C), participating in Watse@rick coherently through each AT segment and dephases completely at each
pairing as AT and GC, are arranged in a specified double strandG base site, at which side-reaction of @ay also occur. The forward
sequence. The long-range charge transfer in a DNA Sequencé’md packward arrows denote the (;oherent charge-transferwave function
: o . . amplitudes used in transfer matrix representation (cf. eq 15).
involves an oxidative hole charge hopping successively from

one G base to the next G, either adjacent or nonadjacent, until ] )
it reaches the hole acceptor or a triple GGG unit. There are no  Note that the redox potential energy difference betweelGG

other oxidized bases found except for @ctually G™) during and any of others is much large compared with room temper-
the charge transfer proces$e® This experimental fact is in ~ ature thermal fluctuation. Thus, the transferring of charge from
agreement with the redox potentials of 4G, C*/C, A*/A, and one G to another G base is operated in on-resonance, while its

T*/T, which are estimated as 7.77, 8.68, 8.26, and 8.87 eV, Passing through the AT segment between two G bases is in
respectively? Thus, the local AT segment constitutes a potential far-off-resonance. As a result of frequency-dependent dephasing
barrier between two charge hopping G-base sites. The |Ong_effect, the former (o_n-reson_ance process) is largely incoherent
range charge transfer in a DNA may therefore be treated as a2nd termed as hopping, while the latter (off-resonance process)
problem of hole transfer/transport in a specified potential (cf. IS largely coherent and termed as tunneling or superexchange.
Figure 1) that consists of a sequence of barriers (AT segments)These arguments lead to the superexchange-mediated sequential

and wells (GC pairs). The more base pairs the AT segment has/'0PPing model of long-range charge transfer in DNA. This
the wider the barrier is. picture has been widely used receftly and will also be

The charge transfer dynamics and its mechanism are also@dopted in this work. In other words, the following two distinct
greatly influenced by the solvent such as water surroundings. limiting processes will be treated separately and then combined.
The local electronic energy at each base unit is fluctuated due One is the incoherent sequential (multistep)@ hopping and
to its interaction with surrounding water molecules and coupling @nother the coherent unistep (superexchange) tunneling through
with the vast numbers of vibrational/librational motions in DNA.  the AT segment in between. Conventionally, the former is
The energy fluctuation leads to decoherence or dephasing thagescrlbe_d by a multistep kinetic rate formulation, while the_ latter
is crucially important to the long-range charge transfer dynamics. IS described by the Marcus electron transfer thédry? This
However, for a given strength of energy fluctuation, the Paper will demonstrate the coherent scattering matrix technique
dephasing effect at each base site depends strongly on the energgS an alternative approach to the superexchange in long-range

difference between the charge carrier and the base. The effectiveeharge transfer in DNA. ) ) )
dephasing rate decreases dramatically as the detuning in- 1Nheremainder of this paper is organized as follows. In section

crease® Il we start with the conventional multistep kinetic rate descrip-
tion of the incoherent sequentiaH& hopping processes. The
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10.1021/jp011965n CCC: $20.00 © 2001 American Chemical Society
Published on Web 09/15/2001



9564 J. Phys. Chem. A, Vol. 105, No. 41, 2001

analytical formulation for the chemical kinetic rate product
yields, and further, the establishment of an exact Ohm'’s law
for those experimentally measurable quantities. The latter result
also suggests the use of transport theory in mesoscopic
physics?1=25 such as the coherent scattering matrix method in
section Ill, as an alternative approach to treat the effect of
coherent AT segment on the chemical yields. Thus, section IlI
finalizes a simple and explicit expression to evaluate the product
yields of long-range charge transfer in DNA with arbitrary
!engths and sequences. In.section \YA the theoretical formulation , - ic equivalent to the kinetic rate scheme (eq 1) and maps the
is compared to the experiments of Giese and co-woRk&¥s.  nomalized DC currents)/l andlylo, to the stationary chemical yields,
Together with some comments on the relation between the Y, andYa, respectively (eq 11).

present approach and the conventional long-range charge transfer

theory, this paper is finally concluded in section V. Here, the superscript denotes matrix transpose, and

Figure 2. The electric conductancég;, y;} connecting configuration

Il. Incoherent Sequential G—G Hopping Processes:
Kinetics versus Ohm’s Law

G(9) = [, dteG(t) (6)
A. The Background — Kinetic Rates Scheme As men- Many experiments have involved the measurements of
tioned earlier, the superexchange-mediated sequential hoppingstationary chemical yieldg = P;(e) of the competing byprod-

model allows to treat the incoherent and coherent, two theoreti- Ucts andY(GGG) :1§GG_G(°°) of the charged (i.e., oxidized)
cal limiting processes, separately. In this section, we focus on acceptor moleculel!°With eqs 2 and 6, these chemical yields

the first one, the incoherent sequential charge hopping from onean be expressed as
guanine G to another G, by using the following commonly
adopted kinetic scherk&!®

k Kn- Kn
G=G:  -==c=GGG

byg dyoeee Wy
Py Pyees Py

@)

The charge donor is the™Gat the first guanine site, while the
acceptor is a triple guanine GGG segment. Implied in eq 1 are
alsokj = kj; except fork = 0, for the backward reaction rates.
The kinetic scheme eq 1 is consistent with Figure 1 in which
the tunneling (superexchange) through an individual AT segment
is characterized by a kinetic ratg. These unistep coherent
tunneling rates will be investigated in the next section. In eq 1,
P, denotes the byproduct with the generation rate;adue to

the reaction of the G cation at theith potential well site (cf.
Figure 1) with the surrounding water molecules.

Let us denotés(t) as the population vector for the charge at
various G sites, andP(t) as that for the byproducts. The
population for the long-range charge transfer to the acceptor
GGG site is denoted &gsc(t). The charge is initially at the
donor G site, i.e.Gj(0) = 0j1, andPj(0) = Pgeg(0) = 0. The
kinetic scheme in eq 1 amounts to the following relations:

P(t) =y, f;dr G() (2a)
Pocall) = ky f3dr Gy() (2b)

and
G(t) = —AG(t) or G(t)=exp—ADGO) (3)

Here,A is a symmetric and tridiagonal rate matrix. Its nonzero
elements are

A

A=yt ktka A J

]

L k, (4)

The initial condition to eq 3 isGj(0) = dy. The Laplace
transform of eq 3 reads then

+1j =

(s1+ A)G(s)=(1,0,---0) (5)

Y, =7G(0); V(GGG)=kGy(0) @)
The normalization reads &GGG)+ 3;Y; = 1. The remainder
of this paper will focus on these experimental observations.

B. Chemical Yields versus Ohm’s Law.This subsection
aims at the analytical expressions for the chemical yields, which
are further related to the normalized electric currents via a direct
mapping between the kinetic rates and the conductances. To
obtain the expressions for chemical yields (eq 7), we shall solve
(cf. eq 5)

AG0)=(1,0,---,0) (8)

The analytical solution to eq 8 can be obtained via setting the
tridiagonal symmetric rate matrix to b® = LTL, whereL is
the lower trigonal. AsA is tridiagonal, the nonzero elements
in L are only those oL andLj+1j, and can be determined
easily via its definition. The solution to eq 8 can thus be obtained
via solving firstL™x = (1, 0, + -, 0)T and thenLG (0) = x.
After some simple algebra, the analytical expressions for the
desired chemical yields (eq 7) can be arranged as follows:

v Y1 v vi AL =y L (9a)
:—, = — —, > a
", "o :
NI =y
Y(GGG)= ﬂ— (9b)
) T
with
Ik
T =y +k, =y +=—"1- j<N (9
N VN kN i VJ rj+1+kj J ( )

The physical meaning of that is defined in the inward-
recursion relation eqg 9c will be given soon. Obviously, the
chemical yields (eq 9) depend only on the rate rakjgs and
yilys, withj=1,+ < N.

The significance of the analytical solutionsYp(eq 9a) and
Y(GGG) (eq 9b) can further be recognized as they amount
respectively to the normalized DC electric curredits andin/
lo in Figure 2. Here, the kinetic ratdg and y; are viewed as
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electric conductances (i.e., inverse resistances), which are Traditionally the superexchange raftgis treated via the
connected in the same configuration as the kinetic rate schemeMarcus electron transfer theoretical framework and, in terms
in eq 1. As a resultlj (eq 9¢) amounts to the subtotal electric of nonadiabatic coupling strength, solvent reorganization and
conductance inside the dotted frame in Figure 2. Note that the nuclear FranckCondon factord?=18 In the next subsection,
above rate-to-conductance mapping is up to a common constantve shall adopt the scattering matrix approach widely used in
(cf. eq 13 and its comments followed), which is, however, the quantum transport society.?> The key quantity here i§;
irrelevant to either the chemical yield¥j, Y(GGG} or to the (eq 12), which, as discussed earlier, can be considered as the
normalized electric curren{sl/lo, In/lo} in Figure 2. The electric coherent transmission coefficient in the quantum transport

currents involved in Figure 1 satisfy theory. Note that O T, only if T; < 1. Physically,T; is,
however, more fundamental thdg especially in relation to
Iy =y, Gy = @ — y)IT; (10) the DNA-based nanodevice applications.
Care must be taken as the same terminology “transmission
The above relations lead to the expressions$ and In/lo coefficient” has also been used in the classical thermal activation
that are exactly the same as thoseYpfeq 9a) andY(GGG) rate theory for the probability of successful events of the
(eq 9b), respectively: transition complex converting into reaction product. In this work,

the transmission coefficier®; is referred to the probability of
coherent charge being tunneled through a specified AT segment
(or a potential barrier in Figure 1).

B. Scattering Matrix Approach to Coherent Transmission
oefficients. We shall make use of the simplest coherent
transport scattering matrix technig@iéo formulate the coherent
transmission coefficien;. The final expression will be written
in terms ofT and Ty for the smallest AT- and TA-bridge units:

Y, =3/l Y(GGG)= I/l (11)

We have thus established the Ohm’s Law of kinetic rate theory
the exact mapping between the chemical yields (egs 9) and theC
normalized DC currents (eq 11).

lll. Unistep Tunneling through AT Segments: Coherent
Scattering Matrix Approach

A

A. Comments on Coherent Transfer ParametersWe are T, Al acceptor (14a)

now in the position to formulate the unistep realte that
characterizes the charge superexchange tunneling through a T

specified AT segment. The key quantity involved in the T donor— A — acceptor (14b)
following theoretical development will be

donor—

and their numbers, andny in the consideregth AT segment.
T =kl(yqgt kj) (12) Physically, the parameterBa and T+ amount to the charge
transfer yields for the systems (eq 14) being assumed the special
cases of eq 1. The difference between the intrastrand and
interstrand tunnelings may also be distinguished locally and will
be discussed later. The resulting expressiofi;air k; (cf. eq

and sequence of any specified AT segment in a DNA molecule 18 or 19) will then be used together with eq 9 to fit for the
q Y Sb 9 ' parameter§, and Ty in a series of DNA sequences under the

will be formulated via the coherent scattering matrix approach same experimental condition. By doing that, the complications

In the next subsection. To justify the approach to be used, we of nonadiabatic coupling strength, solvent reorganization and

(S)?"fl‘_l'l zré;h;sziubsectlon make some comments on the Slgmlflcancenuclear Franck Condon factors involved in the standard Marcus
j .

18 i
In view of the established mapping between the kinetic rate electron transfer theoty 18 may be properly taken into account

and electric conductance (inverse resistance), the branching{or via Ta and Tr. Nevertheless, the ultimate justification of
parameterT, (eq 12) may amount to the coherent charge he following scattering matrix approach Tpwill be up to the

S S . experimental scrutiny (cf. section V).
FLasrt]i?iT;?iSclﬁnfgﬁg\]:fvlgelr:];Irnam((:ac?r?gf:rﬂCct(;?lgi?:?cr)trtt:v?ﬁ&;l@zg?tz In scattering matrix formulation, the coherent transfer is most
] : ! conveniently described in terms of the forward (backward)

transmission coefficient, the Landauer’s electric resistance readsamplitudesa,— (a]-’) anda 1 (a]_,H) of the charge wave function

The relative kinetic rate required for eq 1 or 9 is thelyq =

Ti/(1 — T;). Note that the side reaction rate used in eq 12jis
= y4 for the donor G, instead qf; for thejth bridge G base. A
desired expression @f (cf. eq 18), in terms of the local length

1,22
asg (or the arrows in Figure 1) before and after jtieAT segment
R= (h/ez)(l o s (13) (potential barrier) in consideration. We ha¥é®
Here,h is Planck’s constant arelthe electron charge. The rate- [al',“] = 1[{ " ] [a],] = Ti[a]-'] (15)
to-conductance mapping is given explicitly dg/yq = &1 L] A | &

(h/eZ)R,-_l, with the common scaling parameterigf= y1. The o . .

total electric resistance measured fbcoherent conductors that ~ Here,tj andr; are the transmission and reflection amplitudes,
areincoherently connected in seriggssuming; =« - - = yy respectively.

= 0, is given asR = YR + R;, whereR; = h/€? is the so-

called contact resistance resulting from the measurefett. =T r=i@-T)" (16)

By denotingR = (h/e?)/Tes, the effective total transmission

coefficient is then obtained &« = [ (1 — T))/T; + 1]~ This The second identity in eq 15 defines the transfer matyix he

is exactly the expression for charge transfer yGGG) (eq evaluation ofT; is therefore equivalent to determifigand vice
9b) in the special casgp =« + - = yn = 0, of study. Obtained  versa. We shall also dencfg and Tt as the coherent transfer
in this case is also the conventional Ohm's law of sequential matrices for eqs 14a and 14b, respectively. Note that the transfer
hopping rate:ky; = Yk . Here ket = yaTer/(1 — Ter) (cf. eq matrix is different from the scattering S-matrix. The latter
12). connects the outgoing waves+1, ,} with the incoming
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wave {a, &,,} and is more readily generalized to multidi- TABLE 1: Comparison between Experimental and

mensional and/or partially incoherent systethg5:27.28 Theoretical Yields Y(GGG) and (Y1)

It is well-known that a coherent transfer matrix can be no. bridge N exptP theor
expressed as the products of its coherent composite coherent; T 1 0.97 0.97
transfer matrice$326 It is also easy to show that for a set of A
transfer matrices of the form in eq 15, its multiplication is i AT 1 0.76% 0.77
commutable (Abelian group). In other words, we have TA

iii TT 1 0.90° 0.90
T, =TRTH 17) . A
i AT iv ATGT 2 0.73 0.74
. TACA (0.22) (0.24)
Here,ny and nr are respectively the numbers of AT and TA v TTGTT 2 0.73 0.75
base pairs in the specified AT segment. The coherent transmis- AACAA
sion coefficient can thus be obtained as vi TTGTTGTTGTT 4 0.47 0.46
vii QCAIA(?TAACAACAA 2 0.7% 0.79
Ty =Ti(na, ) = 4R 27 + 2, 27™)? (18 TGTA 019)  (0.13)
viii ACGTCTGACTCGACT 7 0.77 0.54
where TGCAGACTGAGCTGA (0.13) (0.14)

aReference 9° Reference 10. The experimental relative error is

A=A+ J1-TIWT; a=ATorx (18b)  apout 10%.

Note thatZ, > 1. In writing eq 17 or 18, we neglected the In the sequences i-vi in Table 1, all substeps coherent
orientation variations of base pairs, with respect to the charge-nneling (superexchange) are intrastrand processes. The ex-
transfer direction, stacking at different positions in DNA double- perimental values o¥(GGG) in this series are used with the

helix structure. As a resulTa and Tr in eq 18 should be  |east-squares fit to obtain the three parameTarsTr, andyy/
considered as a sort of mean-field parameters. vain eq 20.

Furthermore, intrastrand and interstrand transfer processes |, the sequence vii in Table 1, the involved two coherent
may need to be treated differently in each of the local nneling substeps are all interstrand processes. The relevant
superexchange substeps. In the former case, two neighboringynneling parameter is only. With the determined value of
guanines at the_en_ds of the specified AT segment are in the)/b/yd, the experimentaf(GGG) of this sequence gives the value
same strand, while in the latter case they are in different strands. T, shown in eq 20. In the sequence viii, all coherent substeps
For an interstrand charge transfer procégsandTr may be  gr6 also considered as interstrand processes. The theoretical
considered to have the same valu&am the mean-field sense yields are evaluated via the above obtained param@ieaad
as described earlier. Yoly.

By substituting eq 18 into eq 12, we finally obtain The reasons for the significant underestimation of the

_ _ theoretical Y(GGG) for the sequence viii in Table 1 may be
— Na 1Nt n nr\2
ki/?’d_‘“@AA AT = Aa M AT (19) understood by noticing the existence of double guanines

C : . .
or klyg = 41" — 2."2 with n = na + nr, for a local (Gg) as well in the bridge. The redox potential of double

intrastrand or interstrand superexchange rate, respectively. Theduanines is lower than that of @3, leading to a relatively large
above equation together with eq 9 constitute the final formula- €xperimental value o¥(GGG). However, the present model
tion for evaluating the chemical yields in the long-range charge did not take this favorable effect into consideration as eq 1, in

transfer in an arbitrary DNA molecule. which kj’ = kj had assumed that the redox potentials of bridge
GC segments were all equal. We shall treat the case-ofk;
IV. Comparisons with Experiments elsewheré?

We shall hereafter specifya and Ty as the intrastrand and v/ piscussion and Summary
Tx the cross-strand coherent tunneling parameters. Further } . ) .
simplification can be made by assuming that the deprotonation N summary, we have derived a relatively simple formulation
rates for the bridge guanines reacting with water are all equal: (€as 9 and 19) for evaluating chemical yields in long-range
¥; = yp, forj = 1. As a result, there are total of four parameters, charge transfer processes in DNA. As demonstrated in Table
{Ta, Tr, Tuyo/yd}, to be determined in the following. 1, the present approach can properly account for the rate
Table 1 presents the quantitative comparison between thedependence on both the length and sequence of a DNA strand.

present theory and experimental measurements of Giese and © €lucidate the sequence dependence further, let us compare
co-workers?10 The fitting parameters are (noting that = yq the Y(GGG) value of donor AAGA —acceptor with that of the

andy; = yp if j = 1) reversed bridge sequence, donAiGAA —acceptor. The theo-
retical estimated product yields are 0.45 and 0.54, respectively,
{Ta T+, T, vo/vet ={0.89,0.97,0.97,0.85 (20) for the intrastrand charge transfer in these two sequences.
The present formulation of long-range charge transfer is
Shown in Table 1 are both the values Yof (in parentheses)  developed by combining two theoretical limits. One is the
andY(GGG). The original experimental data were repotféd complete incoherent multistep, or sequential hopping, and
in terms of the effective rat¢ = Y(GGG)/[1 — Y(GGG)] and another the complete coherent unistep tunneling process. The
the relative rate’ = Y(GGG)/Y:1. The donor G and the acceptor  generalization of the present theory to account for partial
GGG that are not shown explicitly in Table 1 are in the same coherence is under way and will be published elsewhere.
strand as the top line of bridge base(s) in each of DNA  For sequential hopping rate processes, we adopt the com-
sequences. Indicated in the third column are the valugd,of monly used kinetic scheme (eq 1) and arrive at analytical
the number of local AT-bridge segments used in eq 9. expressions (eq 9), which constitute the Ohm'’s law for evaluat-
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ing chemical yields (cf. Figure 2). This Ohm’s law of kinetic of nuclear FranckCondon contribution. Moreover, as men-
rate theory, to our knowledge, has not been recognized in thetioned earlier and demonstrated via comparison with experi-
literature. In the chemical kinetics community, the Ohm’s law mental results, the present parameterization approach to evaluate
is by far only narrowly referred to the limiting caseaf = y- Tj (eq 12) may also largely take into account the complicated
= ... =yy =0, in which the present analytical formulation solvent and nuclear contributions.

reduces tdeg = Yk . Here ket = Y(GGG)/[1— Y(GGG)] is

in the unit ofyy. Detailed analyses off{GGG) for the case of
k = k in the presence aof, = O were reported by Ratner and
co-workerd® and by Bixon and Jortnéf.One of the important
results}® which has also been reproduced (not shown) via the References and Notes
present analytical expression, is tNg&GG) 0 e NN, whenN
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