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A formulation that readily allows quantitative comparisons with experimental chemical yields in long-range
charge transfer in DNA is developed. The theory is based on a superexchange-mediated sequential hopping
model that takes into account the multistep charge migrations (hopping) among guanine bases and the individual
substep of superexchange (tunneling) through adenines and/or thymines. An exact Ohm’s law is established
for kinetic multistep hopping processes, while the scattering matrix technique is exploited to determine the
coherent unistep contributions. Presented are also the quantitative comparisons with the experimental
measurements in some DNA molecules involving intrastrand and/or interstrand charge transfer processes in
aqueous solution. The dependence of product yield on both the length and the sequence of DNA is clearly
demonstrated.

I. Introduction

Understanding of long-range charge transfer in DNA is of
central significance for the control and repair of DNA oxidative
damage1,2 and for the development of DNA-based molecular
technology.3,4 Despite a large number of experimental5-10 and
theoretical9-18 studies, the mechanism of the long-range charge
transfer in DNA remains a challenge due to the complexity of
various lengths and sequences of the molecules, together with
their water environment.

In a DNA molecule, four bases adenosine (A), guanosine (G),
thymidine (T), and cytidine (C), participating in Watson-Crick
pairing as AT and GC, are arranged in a specified double strand
sequence. The long-range charge transfer in a DNA sequence
involves an oxidative hole charge hopping successively from
one G base to the next G, either adjacent or nonadjacent, until
it reaches the hole acceptor or a triple GGG unit. There are no
other oxidized bases found except for G+ (actually G+•) during
the charge transfer processes.5-10 This experimental fact is in
agreement with the redox potentials of G+/G, C+/C, A+/A, and
T+/T, which are estimated as 7.77, 8.68, 8.26, and 8.87 eV,
respectively.19 Thus, the local AT segment constitutes a potential
barrier between two charge hopping G-base sites. The long-
range charge transfer in a DNA may therefore be treated as a
problem of hole transfer/transport in a specified potential (cf.
Figure 1) that consists of a sequence of barriers (AT segments)
and wells (GC pairs). The more base pairs the AT segment has,
the wider the barrier is.

The charge transfer dynamics and its mechanism are also
greatly influenced by the solvent such as water surroundings.
The local electronic energy at each base unit is fluctuated due
to its interaction with surrounding water molecules and coupling
with the vast numbers of vibrational/librational motions in DNA.
The energy fluctuation leads to decoherence or dephasing that
is crucially important to the long-range charge transfer dynamics.
However, for a given strength of energy fluctuation, the
dephasing effect at each base site depends strongly on the energy
difference between the charge carrier and the base. The effective
dephasing rate decreases dramatically as the detuning in-
creases.20

Note that the redox potential energy difference between G+/G
and any of others is much large compared with room temper-
ature thermal fluctuation. Thus, the transferring of charge from
one G to another G base is operated in on-resonance, while its
passing through the AT segment between two G bases is in
far-off-resonance. As a result of frequency-dependent dephasing
effect, the former (on-resonance process) is largely incoherent
and termed as hopping, while the latter (off-resonance process)
is largely coherent and termed as tunneling or superexchange.
These arguments lead to the superexchange-mediated sequential
hopping model of long-range charge transfer in DNA. This
picture has been widely used recently12-16 and will also be
adopted in this work. In other words, the following two distinct
limiting processes will be treated separately and then combined.
One is the incoherent sequential (multistep) G-G hopping and
another the coherent unistep (superexchange) tunneling through
the AT segment in between. Conventionally, the former is
described by a multistep kinetic rate formulation, while the latter
is described by the Marcus electron transfer theory.12-18 This
paper will demonstrate the coherent scattering matrix technique
as an alternative approach to the superexchange in long-range
charge transfer in DNA.

The remainder of this paper is organized as follows. In section
II we start with the conventional multistep kinetic rate descrip-
tion of the incoherent sequential G-G hopping processes. The
main contributions in this section are the derivation of an* Corresponding author. E-mail address: yyan@ust.hk.

Figure 1. Schematic diagram for the sequential tunneling model of
long-range charge transfer in a DNA sequence. Each potential barrier
or well represents a local AT or GC segment, with its height or depth
being determined by the oxidation energy and its width by the number
of local base pairs. The model assumes that the charge tunnels
coherently through each AT segment and dephases completely at each
G base site, at which side-reaction of G+‚ may also occur. The forward
and backward arrows denote the coherent charge-transfer wave function
amplitudes used in transfer matrix representation (cf. eq 15).
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analytical formulation for the chemical kinetic rate product
yields, and further, the establishment of an exact Ohm’s law
for those experimentally measurable quantities. The latter result
also suggests the use of transport theory in mesoscopic
physics,21-25 such as the coherent scattering matrix method in
section III, as an alternative approach to treat the effect of
coherent AT segment on the chemical yields. Thus, section III
finalizes a simple and explicit expression to evaluate the product
yields of long-range charge transfer in DNA with arbitrary
lengths and sequences. In section IV, the theoretical formulation
is compared to the experiments of Giese and co-workers.9,10

Together with some comments on the relation between the
present approach and the conventional long-range charge transfer
theory, this paper is finally concluded in section V.

II. Incoherent Sequential G-G Hopping Processes:
Kinetics versus Ohm’s Law

A. The Background - Kinetic Rates Scheme.As men-
tioned earlier, the superexchange-mediated sequential hopping
model allows to treat the incoherent and coherent, two theoreti-
cal limiting processes, separately. In this section, we focus on
the first one, the incoherent sequential charge hopping from one
guanine G to another G, by using the following commonly
adopted kinetic scheme13,16

The charge donor is the G+ at the first guanine site, while the
acceptor is a triple guanine GGG segment. Implied in eq 1 are
alsok′j ) kj; except fork′j ) 0, for the backward reaction rates.
The kinetic scheme eq 1 is consistent with Figure 1 in which
the tunneling (superexchange) through an individual AT segment
is characterized by a kinetic ratekj. These unistep coherent
tunneling rates will be investigated in the next section. In eq 1,
Pj denotes the byproduct with the generation rate ofγj due to
the reaction of the G+ cation at thejth potential well site (cf.
Figure 1) with the surrounding water molecules.

Let us denoteG(t) as the population vector for the charge at
various G sites, andP(t) as that for the byproducts. The
population for the long-range charge transfer to the acceptor
GGG site is denoted asPGGG(t). The charge is initially at the
donor G site, i.e.,Gj(0) ) δj1, andPj(0) ) PGGG(0) ) 0. The
kinetic scheme in eq 1 amounts to the following relations:

and

Here,Λ is a symmetric and tridiagonal rate matrix. Its nonzero
elements are

The initial condition to eq 3 isGj(0) ) δ1j. The Laplace
transform of eq 3 reads then

Here, the superscriptT denotes matrix transpose, and

Many experiments have involved the measurements of
stationary chemical yieldsYj ) Pj(∞) of the competing byprod-
ucts andY(GGG) ) PGGG(∞) of the charged (i.e., oxidized)
acceptor molecules.9,10 With eqs 2 and 6, these chemical yields
can be expressed as

The normalization reads asY(GGG)+ ∑jYj ) 1. The remainder
of this paper will focus on these experimental observations.

B. Chemical Yields versus Ohm’s Law.This subsection
aims at the analytical expressions for the chemical yields, which
are further related to the normalized electric currents via a direct
mapping between the kinetic rates and the conductances. To
obtain the expressions for chemical yields (eq 7), we shall solve
(cf. eq 5)

The analytical solution to eq 8 can be obtained via setting the
tridiagonal symmetric rate matrix to beΛ ≡ LTL , whereL is
the lower trigonal. AsΛ is tridiagonal, the nonzero elements
in L are only those ofLjj and Lj+1,j, and can be determined
easily via its definition. The solution to eq 8 can thus be obtained
via solving firstLTx ) (1, 0, ‚ ‚ ‚ , 0)T and thenLG̃ (0) ) x.

After some simple algebra, the analytical expressions for the
desired chemical yields (eq 7) can be arranged as follows:

with

The physical meaning ofΓj that is defined in the inward-
recursion relation eq 9c will be given soon. Obviously, the
chemical yields (eq 9) depend only on the rate ratioskj/γ1 and
γj/γ1, with j ) 1, ‚ ‚ ‚ , N.

The significance of the analytical solutions toYj (eq 9a) and
Y(GGG) (eq 9b) can further be recognized as they amount
respectively to the normalized DC electric currentsJj/I0 andIN/
I0 in Figure 2. Here, the kinetic rateskj and γj are viewed as

Figure 2. The electric conductances{kj, γj} connecting configuration
that is equivalent to the kinetic rate scheme (eq 1) and maps the
normalized DC currents,Jj/I0 andIn/I0, to the stationary chemical yields,
Yj andYA, respectively (eq 11).

G̃(s) ≡ ∫0

∞
dt e-stG(t) (6)

Yj ) γjG̃j(0); Y(GGG)) kNG̃N(0) (7)

ΛG̃(0) ) (1, 0,‚ ‚ ‚ , 0)T (8)

Y1 )
γ1

Γ1

, Yj )
γj

Γj
∏
l)1

j-1Γl - γl

Γl

; j > 1 (9a)

Y(GGG)) ∏
l)1

N Γl - γl

Γl

(9b)

ΓN ≡ γN + kN, Γj ) γj +
Γj+1kj

Γj+1 + kj
; j < N (9c)
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GGG

V γ1 V γ2 ‚ ‚ ‚ VγN

P1 P2 ‚ ‚ ‚ PN

(1)

Pj(t) ) γj∫0

t
dτ Gj(τ) (2a)

PGGG(t) ) kN∫0

t
dτ GN(τ) (2b)

G4 (t) ) -ΛG(t) or G(t) ) exp(-Λt)G(0) (3)

Λjj ) γj + kj + kj-1; Λj+1,j ) Λj,j+1 ) - kj (4)

(s1 + Λ)G̃(s) ) (1, 0,‚ ‚ ‚ 0)T (5)
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electric conductances (i.e., inverse resistances), which are
connected in the same configuration as the kinetic rate scheme
in eq 1. As a result,Γj (eq 9c) amounts to the subtotal electric
conductance inside the dotted frame in Figure 2. Note that the
above rate-to-conductance mapping is up to a common constant
(cf. eq 13 and its comments followed), which is, however,
irrelevant to either the chemical yields{Yj, Y(GGG)} or to the
normalized electric currents{Jj/I0, IN/I0} in Figure 2. The electric
currents involved in Figure 1 satisfy

The above relations lead to the expressions ofJj/I0 and IN/I0

that are exactly the same as those ofYj (eq 9a) andY(GGG)
(eq 9b), respectively:

We have thus established the Ohm’s Law of kinetic rate theorys
the exact mapping between the chemical yields (eqs 9) and the
normalized DC currents (eq 11).

III. Unistep Tunneling through AT Segments: Coherent
Scattering Matrix Approach

A. Comments on Coherent Transfer Parameters.We are
now in the position to formulate the unistep ratekj that
characterizes the charge superexchange tunneling through a
specified AT segment. The key quantity involved in the
following theoretical development will be

The relative kinetic rate required for eq 1 or 9 is thenkj/γd ≡
Tj/(1 - Tj). Note that the side reaction rate used in eq 12 isγd

≡ γ1 for the donor G, instead ofγj for the jth bridge G base. A
desired expression ofTj (cf. eq 18), in terms of the local length
and sequence of any specified AT segment in a DNA molecule,
will be formulated via the coherent scattering matrix approach
in the next subsection. To justify the approach to be used, we
shall in this subsection make some comments on the significance
of Tj (eq 12).

In view of the established mapping between the kinetic rate
and electric conductance (inverse resistance), the branching
parameterTj (eq 12) may amount to the coherent charge
transmission coefficient in mesoscopic transport theory.21-25 The
justification follows. For a coherent conductor withTj as its
transmission coefficient, the Landauer’s electric resistance reads
as21,22

Here,h is Planck’s constant ande the electron charge. The rate-
to-conductance mapping is given explicitly askj/γd ≡
(h/e2)Rj

-1, with the common scaling parameter ofγd ≡ γ1. The
total electric resistance measured forN coherent conductors that
areincoherently connected in series, assumingγ2 ) ‚ ‚ ‚ ) γN

) 0, is given asR ) ∑Rj + Rc, whereRc ≡ h/e2 is the so-
called contact resistance resulting from the measurement.21-24

By denotingR ) (h/e2)/Teff, the effective total transmission
coefficient is then obtained asTeff ) [∑(1 - Tj)/Tj + 1]-1. This
is exactly the expression for charge transfer yieldY(GGG) (eq
9b) in the special case,γ2 ) ‚ ‚ ‚ ) γN ) 0, of study. Obtained
in this case is also the conventional Ohm’s law of sequential
hopping rate:keff

-1 ) ∑kj
-1. Here,keff ≡ γdTeff/(1 - Teff) (cf. eq

12).

Traditionally the superexchange ratekj is treated via the
Marcus electron transfer theoretical framework and, in terms
of nonadiabatic coupling strength, solvent reorganization and
nuclear Franck-Condon factors.12-18 In the next subsection,
we shall adopt the scattering matrix approach widely used in
the quantum transport society.21-25 The key quantity here isTj

(eq 12), which, as discussed earlier, can be considered as the
coherent transmission coefficient in the quantum transport
theory. Note thatkj ∝ Tj only if Tj , 1. Physically,Tj is,
however, more fundamental thankj, especially in relation to
the DNA-based nanodevice applications.

Care must be taken as the same terminology “transmission
coefficient” has also been used in the classical thermal activation
rate theory for the probability of successful events of the
transition complex converting into reaction product. In this work,
the transmission coefficientTj is referred to the probability of
coherent charge being tunneled through a specified AT segment
(or a potential barrier in Figure 1).

B. Scattering Matrix Approach to Coherent Transmission
Coefficients. We shall make use of the simplest coherent
transport scattering matrix technique26 to formulate the coherent
transmission coefficientTj. The final expression will be written
in terms ofTA andTT for the smallest AT- and TA-bridge units:

and their numbersnA andnT in the consideredjth AT segment.
Physically, the parametersTA and TT amount to the charge
transfer yields for the systems (eq 14) being assumed the special
cases of eq 1. The difference between the intrastrand and
interstrand tunnelings may also be distinguished locally and will
be discussed later. The resulting expression ofTj or kj (cf. eq
18 or 19) will then be used together with eq 9 to fit for the
parametersTA andTT in a series of DNA sequences under the
same experimental condition. By doing that, the complications
of nonadiabatic coupling strength, solvent reorganization and
nuclear Franck-Condon factors involved in the standard Marcus
electron transfer theory12-18 may be properly taken into account
for via TA and TT. Nevertheless, the ultimate justification of
the following scattering matrix approach toTj will be up to the
experimental scrutiny (cf. section IV).

In scattering matrix formulation, the coherent transfer is most
conveniently described in terms of the forward (backward)
amplitudesaj (a′j) andaj+1 (a′j+1) of the charge wave function
(or the arrows in Figure 1) before and after thejth AT segment
(potential barrier) in consideration. We have23,26

Here, tj and rj are the transmission and reflection amplitudes,
respectively.

The second identity in eq 15 defines the transfer matrixT j. The
evaluation ofTj is therefore equivalent to determineT j and vice
versa. We shall also denoteTA andTT as the coherent transfer
matrices for eqs 14a and 14b, respectively. Note that the transfer
matrix is different from the scattering S-matrix. The latter
connects the outgoing wave{aj+1, a′j+1} with the incoming

TA: donor- A
T - acceptor (14a)

TT: donor- T
A - acceptor (14b)

[aj+1

a′j+1] ) 1
tj[1 rj

-rj 1 ][aj

a′j ] ≡ T j[aj

a′j ] (15)

tj ≡ Tj
1/2, rj ≡ i(1 - Tj)

1/2 (16)

Jj/Ij-1 ) γj/Γj, Ij/Ij-1 ) (Γj - γj)/Γj (10)

Yj ) Jj/I0, Y(GGG)) IN/I0 (11)

Tj ≡ kj/(γd + kj) (12)

Rj ) (h/e2)(1 - Tj)/Tj (13)
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wave {aj, a′j+1} and is more readily generalized to multidi-
mensional and/or partially incoherent systems.21-25,27,28

It is well-known that a coherent transfer matrix can be
expressed as the products of its coherent composite coherent
transfer matrices.23,26 It is also easy to show that for a set of
transfer matrices of the form in eq 15, its multiplication is
commutable (Abelian group). In other words, we have

Here,nA and nT are respectively the numbers of AT and TA
base pairs in the specified AT segment. The coherent transmis-
sion coefficient can thus be obtained as

where

Note thatλR > 1. In writing eq 17 or 18, we neglected the
orientation variations of base pairs, with respect to the charge-
transfer direction, stacking at different positions in DNA double-
helix structure. As a result,TA and TT in eq 18 should be
considered as a sort of mean-field parameters.

Furthermore, intrastrand and interstrand transfer processes
may need to be treated differently in each of the local
superexchange substeps. In the former case, two neighboring
guanines at the ends of the specified AT segment are in the
same strand, while in the latter case they are in different strands.
For an interstrand charge transfer process,TA andTT may be
considered to have the same value asTx in the mean-field sense
as described earlier.

By substituting eq 18 into eq 12, we finally obtain

or kj/γd ) 4/(λx
n - λx

-n)2; with n ) nA + nT, for a local
intrastrand or interstrand superexchange rate, respectively. The
above equation together with eq 9 constitute the final formula-
tion for evaluating the chemical yields in the long-range charge
transfer in an arbitrary DNA molecule.

IV. Comparisons with Experiments

We shall hereafter specifyTA andTT as the intrastrand and
Tx the cross-strand coherent tunneling parameters. Further
simplification can be made by assuming that the deprotonation
rates for the bridge guanines reacting with water are all equal:
γj ) γb; for j * 1. As a result, there are total of four parameters,
{TA, TT, Tx,γb/γd}, to be determined in the following.

Table 1 presents the quantitative comparison between the
present theory and experimental measurements of Giese and
co-workers.9,10 The fitting parameters are (noting thatγ1 ≡ γd

andγj ) γb if j * 1)

Shown in Table 1 are both the values ofY1 (in parentheses)
andY(GGG). The original experimental data were reported9,10

in terms of the effective rateφ ) Y(GGG)/[1 - Y(GGG)] and
the relative rateφ′ ) Y(GGG)/Y1. The donor G+ and the acceptor
GGG that are not shown explicitly in Table 1 are in the same
strand as the top line of bridge base(s) in each of DNA
sequences. Indicated in the third column are the values ofN,
the number of local AT-bridge segments used in eq 9.

In the sequences i-vi in Table 1, all substeps coherent
tunneling (superexchange) are intrastrand processes. The ex-
perimental values ofY(GGG) in this series are used with the
least-squares fit to obtain the three parametersTA, TT, andγb/
γd in eq 20.

In the sequence vii in Table 1, the involved two coherent
tunneling substeps are all interstrand processes. The relevant
tunneling parameter is onlyTx. With the determined value of
γb/γd, the experimentalY(GGG) of this sequence gives the value
of Tx shown in eq 20. In the sequence viii, all coherent substeps
are also considered as interstrand processes. The theoretical
yields are evaluated via the above obtained parametersTx and
γb/γd.

The reasons for the significant underestimation of the
theoreticalY(GGG) for the sequence viii in Table 1 may be
understood by noticing the existence of double guanines

(CG
GC) as well in the bridge. The redox potential of double

guanines is lower than that of G+/G, leading to a relatively large
experimental value ofY(GGG). However, the present model
did not take this favorable effect into consideration as eq 1, in
which k′j ) kj had assumed that the redox potentials of bridge
GC segments were all equal. We shall treat the case ofk′j * kj

elsewhere.29

V. Discussion and Summary

In summary, we have derived a relatively simple formulation
(eqs 9 and 19) for evaluating chemical yields in long-range
charge transfer processes in DNA. As demonstrated in Table
1, the present approach can properly account for the rate
dependence on both the length and sequence of a DNA strand.
To elucidate the sequence dependence further, let us compare
theY(GGG) value of donor-AAGA-acceptor with that of the
reversed bridge sequence, donor-AGAA-acceptor. The theo-
retical estimated product yields are 0.45 and 0.54, respectively,
for the intrastrand charge transfer in these two sequences.

The present formulation of long-range charge transfer is
developed by combining two theoretical limits. One is the
complete incoherent multistep, or sequential hopping, and
another the complete coherent unistep tunneling process. The
generalization of the present theory to account for partial
coherence is under way and will be published elsewhere.

For sequential hopping rate processes, we adopt the com-
monly used kinetic scheme (eq 1) and arrive at analytical
expressions (eq 9), which constitute the Ohm’s law for evaluat-

T j ) TA
nA TT

nT (17)

Tj ≡ Tj(nA, nT) ) 4/( λA
nA λT

nT + λA
-nA λT

-nT)2 (18a)

λR ≡ (1 + x1 - TR)/xTR; R ) A, T, or x (18b)

kj/γd ) 4/(λA
nA λT

nT - λA
-nA λT

-nT)2 (19)

{TA, TT, Tx, γb/γd} ) {0.89, 0.97, 0.97, 0.85} (20)

TABLE 1: Comparison between Experimental and
Theoretical Yields Y(GGG) and (Y1)

no. bridge N exptla,b theor

i T 1 0.97a 0.97
A

ii AT 1 0.76a 0.77
TA

iii TT 1 0.90b 0.90
AA

iv ATGT 2 0.75a 0.74
TACA (0.22) (0.24)

v TTGTT 2 0.73b 0.75
AACAA

vi T
A

T
A

G
C

T
A

T
A

G
C

T
A

T
A

G
C

T
A

T
A

4 0.47b 0.46

vii ACAT 2 0.79a 0.79
TGTA (0.19) (0.13)

viii ACGTCTGACTCGACT 7 0.77a 0.54
TGCAGACTGAGCTGA (0.13) (0.14)

a Reference 9.b Reference 10. The experimental relative error is
about 10%.
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ing chemical yields (cf. Figure 2). This Ohm’s law of kinetic
rate theory, to our knowledge, has not been recognized in the
literature. In the chemical kinetics community, the Ohm’s law
is by far only narrowly referred to the limiting case ofγb ) γ2

) ‚ ‚ ‚ ) γN ) 0, in which the present analytical formulation
reduces tokeff

-1 ) ∑jkj
-1. Here,keff ≡ Y(GGG)/[1- Y(GGG)] is

in the unit ofγd. Detailed analyses onY(GGG) for the case of
kj ) k in the presence ofγb * 0 were reported by Ratner and
co-workers13 and by Bixon and Jortner.16 One of the important
results,16 which has also been reproduced (not shown) via the
present analytical expression, is thatY(GGG)∝ e-N/Nc, whenN
> Nc ≡ (k/γb)1/2. Therefore, in the case ofY1 + Y(GGG) * 1
that impliesγb * 0, the Ohm’s law established in this work
can have eitherexponentialor algebraic size-dependence of
rates.

This work further makes use of the coherent scattering matrix
technique (eq 17) to superexchange rate processes. This
conceptually simple idea, despite that it has been used exten-
sively in the physical society, is, however, largely unexplored
in treating charge transfers in chemical/biological systems. The
connection between the present approach and the conventional
long-range electron transfer (ET) theory may be established via
recasting the superexchange result of eq 18 in a tight-binding
description in the absence of nuclear Franck-Condon contribu-
tion. Following the Feynman treatment for tunneling through a
single impurity,30 we obtain the tunneling parameterTR in eq
18b asTR ) 4V2/(∆2 + 4V2). Here, V is the tight-binding
coupling parameter between two nearest-neighbor base pairs,
and∆ the energy gap between the GC (donor) and the AT (or
TA) pair (bridge). Substituting this result into eq 18a, we can
easily calculate the coherent transmission coefficient through
arbitrary sequence of AT/TA pairs. In the weak coupling limit
V , ∆, and assumming an identicalTR for tunneling through
AT and TA pairs, the conventional superexchange behavior is
readily obtained asTj ) 4(V/∆)2n, with a decay parameter of 2
ln(∆/V), as predicted by the standard long-range ET theory.
Alternatively, the coherent transmission coefficient of eq 18a
can also be associated with a Green’s function treatment based
on the tight-binding model,27,31resulting inTj ) 4V2| G1n(∆)|2.
Here, G1n(∆) is the Green’s function of the reduced bridge
subsystem in which the self-energy correction from the donor
and acceptor is included. The conventional long-range ET theory
in which Tj ) (4/V2)|HDA

eff |2 can be obtained by noting thatHDA
eff

) VG1n(∆)V for the effective donor-acceptor superexchange
coupling element. We have thus arrived at the desired relation
between the present coherent scattering matrix approach (eq 18)
and the conventional superexchange ET theory in the absence

of nuclear Franck-Condon contribution. Moreover, as men-
tioned earlier and demonstrated via comparison with experi-
mental results, the present parameterization approach to evaluate
Tj (eq 12) may also largely take into account the complicated
solvent and nuclear contributions.
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